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NONADDITIVE ANALOGUES OF THE BASIC MATHEMATICS OF ADDITIVE MEASUREMENT1

I. INTRODUCTION

Recently there has been vigorous development of theories of additive

measurement.` One reason for the success of these theories is the fact

that the basic mathematics is very well understood. There is a kind of

nonadditive measurement which is becoming important in psychology. This

paper contains nonadditive analogues of what I consider to be the essential

mathematics of additive measurement.

I.1 Measurement as the Study of Transformation and the Scope of the Paper

The scope of this paper is most easily specified when measurement is

regarded in a special way. Measurement is ordinarily thought of as a

matter of assigning numbers to natural objects or of embedding empirical

relational systems in numerical relational systems (Suppes and Zinnes,

1963). However, many measurement theories are easily reformulated as

studies of the ways to assign transformations of numbers to transforma-

tions of natural objects.

For example, we may either directly concern ourselves with the length

of an object or we may think of an object as defining a transformation of

the classes of equally long objects. The transformation defined by an

object x is the mapping of classes induced by the mapping of objects

to objects lengthened by concatenation with x .

In fact the usual theories of length are not formulated in terms of

transformations. However, it would be routine to reformulate some of

them (Suppes, 1951). Furthrmore, there are theories such that, in their
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present form, the represelitation of transformations plays an important

role. For two examples see Krantz's study of additive conjoint measure-

ment (Krantz, 1964) and Levine's uniform systems (Levine, 1970).

In additive theories, the empirical transformations are characteristi-

cally represented by additive transformations of numbers x + constant .

In nonadditive analogous theories, the empirical transformations are

represented by other transformations.

This paper is limited to theories of measurement in which empirical

transformations are represented by the affine transformations3 x -,ax + b

This sort of measurement will be called affine measurement. An example

from signal detection theory is given in Appendix I. For other examples,

sLe Levine, 1972.

1.2 Comments on the Use of Groups and Full Orderings Rather Than Semigroups

and Partial Orderings

The additive transformations form a group with a full order; inverses

and composites of additive transformations are additive transformations and

the usual ordering on numbers induces an ordering on additive transforma-

tions in which any two transformations are comparable. However, the

various measurement theories developed for understanding particular

experimental situations rarely deal with all of the elements of the

group. For example, in the measurement of length, the positivity of

length leads one to consider fully ordered semigroups or groups in which

only positive elements are compared. As an example from experimental
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psychology. in the use of disjunctive reaction time in sensory measurement

(Falmagne, 1971) one compares moderately intense stimuli which are suf-

ficiently different to be discriminated. In this setting it is natural to

consider a partial order or to regard the transformations as elements of

a local semigroup. There are a large number of complex and subtly dif-

ferent other partial systems.

The partial systems are absolutely essential for a complete under-

standing of any experimental problem. However, my study of the measure-

ment literature convinces me that many of the most important ideas of

additive measurement appear in their simplest form in fully ordered groups.

Consequently in this piper the affine transformations will be regarded as

elements of a fully ordered group.'

In both the additive and affine groups all of the inequalities in

the group can be deduced from some of the inequalities. The affine group

happens to contain a subgroup isomorphic to the fully ordered additive

group with the following property: Every inequality in the affine group

can be deduced from inequalities in the additive subgroup (Part V, Cor. 3).

To expedite the translation of partial additive results into affine

results we will study the problem of embedding a partially ordered group

with a fully ordered subgroup in the fully ordered affine group. (See

the first part of section V for details.)

1.3 Intended Role of the Main Result

The main result is a qualitative characterization of the subgroups

of the group of affine transformations. This result is an analogue of a

result attributed to Holder characterizing the additive transformations.



Holder's theorem, or more properly -al ideas appearing in the various

proofs of the theorem and its refinements, play an important role in

additive measurement. They provide a core of familiar mathematics which

enables one to quickly understand several very different measurement

theories; they suggest experimental tests of measurement models and they

suggest algorithms for computing numerical measurements.

For a nontechnical statemea, of the qualitative characterization see

section II.1. For a more detailed statement see the final paragraph of

Part V. For a discussion of how these results can be used to reduce

affine measurement computations 1,v additive measurement problems, see

section 11.2.

It is hoped that these results will play a role like Holder's theorem

and accelerate the development of affine theories of measurement. To

increase the accessibility of the results for nonspecialists, a discussion

of ROC curves and the idea of using group representations as an alternative

to curve fitting are offered in the appendix.



II. INFORMAL DISCUSSION OF RESULTS

In this section thelmathematical results are informally presented

and discussed. The mathematically sophisticated reader is advised to skip

to Section V.

An attempt has been made to avoid technical terms. Some of those

which could not be avoided are defined in the next section.

Suppose G is an ordered group defined either by a psychological

theory or by experimental observations. Suppose further there is reason

to believe that G is structurally like5 a subgroup of the affine

formations x -)ax + b . The results may be viewed as an attempt to

solve the following three problems:

1. Experimental Verification' Find qualitative conditions

subject to experimental test which are logically equivalent

to the assertion that the given group is structurally like

a subgroup of the affine group.

2. Measurement or Representation: Describe a procedure for

measuring the slope and intercept parameters of the ele-

ments of G

3. Uniqueness: Discover the extent to which the numbers

assigned by the measurement procedure are unique.

II.1 Experimental Verification

By a direct calculation it is easy to show that if f(x) = ax + b

and g(x) = cx + d then fg equals gf if and only if b(1 - c) equals
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d(1 - a) . From this fcrmala it follows
6

that if f,g,h are any three

affine transformaticis other than the identity transformation f(x) = x ,

then

fg = gf and gh = hg imply fh = hf

In other words in the set of affine transformations other than the

identity transformation the relation

f commutes with g

is a transitive relation.

This gives a simple, testable necessary condition on the elements

of G other than the identity: commutativity is a transitive relation.

This is the characteristic property of groups structurally like the af-

fine group. When adjoined to conditions taken from the theory of additive

measurement, this transitivity is both necessary and sufficient.

11.2 Measurement Results

To measure the elements of G it is necessary to associate each

element g of G with a pair of numbers a(g) measuring slope and

P(g) measuring the intercept parameter. This task has been reduced to

additive measurement. The key idea is to find an additive subgroup G'
SO

of G and study the way the elements of G transform the elements of
SO

G' . The subgroup is called the derived group of G . It is defined in

the next section IV.



-7-

Suppose that 4' is a monotonic, number valued isomorphism of G' into

the additive real numbers. The problem of computing some such 4' is an

extensively studied additive measurement problem (Krantz, Suppes, Luce and

Tversky, 1971, especially sections 2 and 9.4). Then the following steps de-

fine some functions a,p with all the desired properties. (The rationale

for these steps is given in section V. In the sequel [f,g] abbreviates

f
-1

g fg )

1. Choose an x and y in G such that x and y do not

commute.

2. Let g1 be [x;y] if 114x,y] is positive and [:sr,x] if

it is not.

3. Let go be x if y commutes with g1 Otherwise put go

equal to y .

4. Define a by a(
*(gglg-1) *(g1)

5. Define 0 by 0(g) = 4'([g0,g1) a(g)

11.3 Uniqueness Results

In additive measurement, the measure of a transformation is

essentially a number and this number is unique up to a certain kind of

linear transformation. In affine measurement, each transformation is

represented by a pair of numbers and these numbers are unique up to a

certain kind of linear transformation. In particular, if a,0 define

a representation of G then a',3' also do if and only if for some

positive k and real t
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a' = a

(31 = kp + t(1 - a)

To relate this to the usual classification in measurement, a is an

absolute scale and the ratio p/(1 - a)- is an interval scale.
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222. NOTATION, DEFINITIONS, ABBREVIATIONS

Partial order: reflexive, antisymmetric, transitive relation

Full or linear order: a partial order-which is also connected; i.e.,

a > b or b > a

Monotonic function: order preserving function; i.e.,

x > y implies f(x) l'f(y)

Strictly monotonic function: monotonic plus

f(x) > f(y) implies x > y

Ordered group: a group with a partial order such that all the mappings

defined by left multiplication and right multiplication are monotonic

Archimedean ordered group: an ordered group in which

a < as = a
2
< b implies b < a

n
for some iterate a

n
of a .

Commutator: an element g in group which can be written in the form

g = X
-1
y
-1
xy for some group elements x and y

(x,y): abbreviation for x-ly-ixy

Derived grow The smallest subgroup of a group containing all of the

commutators. Equivalently, the set of products of commutators.

Gt : abbreviation for the derived group of G

Affine group: any one of the three ordered groups defined immediately below.
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Affine group of transformations: The ordered group
AT of unnotonic_-_-_-_--

increasing transformations of the reals with product defined by comp

tion and order given by f > g iff f(x) is eventually as large az

g(x) (i.e., then' is some x0 such that x > xo implies >

Affine group of matrices: The ordered group Am of matrices a b
((0 1): a

a b-. c dis positive)with
(0 1) (0 1) iff

(a =e and b > d) or a > c

and product given by matrix multiplication. The mapping (x (ax +
(a b) .

0 1 is easily shown to be a strictly monotonic isomorphism.

Affine group of pairs. The anti-isomorph 13. of the affine group of mat?

B (< a,b> : a is positive and b is real)

with multiplication < a,b > < c,d > < ac,bc + d > and lexicograpi

ordering. It is the group one gets from the affin? group AT if fur

Lions are written to the right of their argument; i.e., if the affine

transformation f evaluated at < is denoted by (x)f rather than

f(x) . It is used only to simplify notation.

Holder's Theorem (Fuchs, 1963, page 45): If G is a linearly ordered arcl

medeRn group, then there is a strictly monotonic isomorphism into the

group of real numbers with addition and the usual ordering.

ThFtorem (Fuchs, 1963, page 46): If u and v are strictly mono-

tonic real valued isomorphisms mapping G into the additive reals,

then for some positive number a ,

u(g) = av(g) for all g in
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IV. FORMAL STATEMENT OF RESULTS AND PROOFS

The mathematical problem arising in psychology is to find all

isomorphisms of an ordered group G into the affine group. Instead of

directly attacking the problem of monotonically embedding a fully ordered

group G in the fully ordered affine group A we ignore most of the

inequalities on G and study the isomorphisms V: G -*A such that V

restricted to the derived group is monotonic. The mathematical justl:1-

cation of this approach is corollary 3 which shows that there is a sense

in which all the inequalities in G can be deduced from inequalities

in G' . The scientific justification is the fact that, in most applica-
It"

tions,direct experimental verification of certain inequalities involving

elements outside of G' is practically difficult or scientifically question-
-

able. A final consideration in defense of this indirect strategy is that

it gives a simple theory with a sharp separation between additive and

nonadditive ideas.

The concern for isomorphisms with monntadc restrictions rather than

monotonic isomorphisms leads -;:-; the study of partially ordered groups

with linearld ordered derived groups. Later the additional condition

that G! be archimedean win. be imposed.

In the applications, the affine group enters as an ordered group of

matrices Am or an ordered group of real functions A-
T

. (See pre-

ceding section for definitions.) However, notation and computations

are simplest when the affine group is regarded as a set of ordered pairs

B = (<a,b>: a is positive and b is real) with multiplication

< a,b > < c,d > = < ac,bc d > and order induced '.>y the anti-isomorphism
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(1/a -b/1

0

With 0 all results for B can be immediately translated into results for

*614
and AT

We begin with a uniqueness theorem. See corollary 2 for a less

complicated version of it.

Uniqueness Theorem: Let G be a nonabelian partially ordered group with

linearly ordered group G' . If / and it

g a(g), D(g) > i(g)

g at(g), 01(g) > = it (g)

are group isomorphisms of G such that for all u, v E G'

u > v iff 1(u) > i(v) and u > v iff it(u) > it(v)

then

a' = a

and for some positive k and real s

St(g) k3(g) f s(1 - a(g))

for all g in G .
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We prove the equivalent assertion: If I < a,p > is a group

isomorphism of one nonabelian subgroup G of B onto another such that

the restriction of to G' is monotonic then I is of the form

< a,b > ) < a,kb s(1 - a) >

for some positive k and real s .

Proof: Frequent use is made of the formula

(*) [ < a,b > < c,d > j < 1,(1 a)d - (1 - c)b >

and of the fact implied by the monotonicity of 1 restricted to G' that

for some positive k and all < l,d > in G' , 1( < l,d > ) equals

< 1,kd > The second assertion follow's from Hion's theorem.

From * every x in G' and B' is of the form < l,d > . Since

G is not abelian, for some d j 0 , < 1,d > is in G' . To show for

x = < a,b > , a(x) is a we use the formula [ < a,b > < l,d >

< 1,d(1 - a) > . Since A[x,y]) equals [1(x),1(y)] and p < l,d >

equals kd for all y = < l,d > in G' we have 1([x,y]) < 1,kd(? - a) >

< 1,kd[1 - a(x)] > and a(x) is a .

Even for those y = < l,d > not in G' , p(y) equals kd . For

choosing some x = < a,b > with a / 1 in nonabelian G we have

[x,yJ e G' and pax,y1) equals kd(1 - a) . But 1([x,yJ) also equals

[;(x), i(Y)] = < 1,0(Y)(1 a) >
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If x = < a,b > and y = < a,b' > are both in G then from

i(x-iy) < l,b' b > equals [i(x)]-1i(y) = < 1,B(y) - p(x) >

follows f3 < a,b> = f3 <a,bt>sit k(b - b . Consequently i( < a,b > ) equals

< a,kb + t(a) > for some real function t . If x = < a,b > and

y = < c,d > then from i([x,y]) [Ax), 1(y)] follows (1 - a)t(c) =

(1 - c)t(a) . Consequently t(a) is proportional to (1 - a) and

a < a,b >= kb + s(1 - a)

for some constant of proportionality s . This completes the proof.

Since the group of matrices (and the corresponding group of linear

funct :ons x --) ax +b) is of considerably more interest than the group

B the uniqueness theorem is rephrased.

Corollary 1: If i, it given by

(a(g) P(g)
g

\ 0 1

= i(g)

g

(g) pt

0 1

= it(g)

are isomorphisms of a nonabelian partially ordered group with linearly

ordered derived group GI such that i and it have monotonic restrictions

to G' then
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a = a'

and for some positive k and real s

131(g) = kp(g) + s[l - ci(g)]

for all g in G .

Proof: Computation with bijection 0 .

The uniqueness theorem has a valitative statement. It is given as

a corollary.

Corollary 2: If an isomorphism of one nonabelian subgroup G of the

affine group onto another has a monotonic restriction to the derived group

G' then it has a unique extension to an inner automorphism of the affine

group.

Proof: If < a,b > < a,kb (1 a) s > then < a,b >

< k,s >
-1

< a,b > < k,s > . The uniqueness can be verified by a computa-

tion or deduced from the transitivity of commutativity described in the

existence theorem below.

There is a sense in which all of the ordinal information about G

regarded as a subgroup of the affine, group is carried by the derived group

Gi . It is made. explicit in corollary 3.

Corollary 3: If G , < is a nonabelian partially ordered group with

linearly ordered derived group then there is at most one extension of <

to a full order on G such that G with the new order is isomorphic to

a subgroup of the affine group.
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Proof: If I and it are isomorphisms with monotonic restrictions to

GI , then by the preceding corollary there is an x such that it(g)

equals x
-1
9(g)x for all g in G Since the affine group is an

ordered group, si(g) < si(h) iff it(g) < it(h) and all the isomorphisms

i induce the same full order on G

Since the derived group of the affine group is the group of transla-

tions, the linearly ordered derived groups of G embeddable in the affine

group will always be archimedean. For this reason (and to more completely

isolate additive measurement concepts) attention is now restricted to

groups with archimedean derived groups.

Existence Theorem: Let G be a nonabelian ordered group with partial

order < such that G' ordered by the restriction of < is a linearly

ordered, archimedean group. Then there is a group isomorphism I onto

a subgroup of the affine group if and only if commutativity is a transi-

tive relation in the set of elements of G other than the identity.

Furthermore, when there is an isomorphism it may be chosen so that the

restriction to G' is strictly increasing.

Necessity: The necessity of the condition may be estabilished by a routine

calculation. Alternatively one may reason geometrically by regarding the

affine group as the group of transformations x b . Two such

transformations commute when they have the same fixed points.

Sufficiency: By Holder's theorem there is a strictly increasing lir mapping

G' onto a subgroup of the additive reals with the usual ordering. An isomor-

phism is constructed with ' and two elements g
0

and g
1

of G chosen so
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that go doesn't commute with gl

of G and g
1

is in G' .

g1 is larger than e the identity

To obtain go and gl let x and y be any two elements of non -

abelian G which don't commute. Put gl equal to the maximum of [x,y]

1and [y,x] = [x,y] in linearly ordered G' Since commutativity is
IV

transitive we may take go to be either x or y and have [g1,g0] e

Since G' is normal and G is an ordered group g
-1
g
1
g is in

G' and g
-1

g
1
g is larger than e . Consequently the formula

a(g)
tif(g-lgig)

defines a mapping of G into the positive reals. Next it is shown that

a is a homomorphism.

Since G is an ordered group, the mapping x -)g
-1
xg is a strictly

increasing homomorphism of GI Consequently for each fixed g
1.1

x -4*(g
-1

xg) is also a strictly increasing homomorphism into the additive

reals and there is some positive k such that

gg-ixg) = k41(x) for all x e G'

It follows that for all g e G and u , v E GI

(*) tif(ClugWv) tiqumg-lvg)

In particular, for all f and g
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, ,

a(f)a(g) = tlf(f lg OtIrkg
-1
g g) kr(g )]

2

1 1 1

tv(g-1flgifg)

= a(fg)

and a is a homomorphism.

In order to obtain a mapping into the affine group of the form

g i(g) = < a(g), p(g) >

it is necessary to choose a real valued mapping x -)p(x) . For i to be

a homomorphism it is clearly sufficient that p(fg) equal p(f)a(g) + p(g) .

Since G' is abelian for any two conjugate elements f and

g = h
-1

fh in G and u in G' wc have f
-1
uf equal g

-lug
. In

particular for all f,g in G

g [go,f]g go
1

g
-1

go[go,f]gigeo

[go,fg][g,goi

Thus, from * we lave

*(glglg)*([gO'f]) *(g1 )(*0[g 'fg] 4 tV[g'g0])

Rearranging terms and using Wx,y]) equals -4(([y,x]) gives
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qi[go,fg] = a(g)*([gO'f]) 4i([g0'g3)

Thus if 0 is defined by 0(g) = ir([go,d) , then

0(fg) 0(f)a(g) + 0(g)

and the mapping g a(g), 0(g) > i(g) is a homomorphism.

To show is one-to-one, we compute its kernel (g E G: r(g) =

< 1,0 > ) . If /(g) < 1,0 > then ill([go,g]) equals ige) and

Igg-igig) equals Iggi) . Since 4r is one-to-one it follows that x

commutes with both g0 and gl . Since commutativity is transitive on

the elements of G other than e and g0 doesn't commute with gl ,

g can only be e .

Since restricted to G' is clearly strictly increasing, this

completes the proof.

To obtain the equations offered in the recipe of the preceding

section one simply computes 0 of the used in the proof. The fact

that a is a homomorphism justifies the simplification l /a(g) = a(g-1) =

*(gglg-l) *(g1)

In order to have a result valid for both abelian and nonabelian

group let C(G') denote the centralizer of G' ,
O. Oa

C(G1) = (g e G: = g'g for all g' E G')

Since G is abelian implies C(G') equals G one may include Holder's

theorem in the following easily proven generalization of the existence

theorem.
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Let G be an ordered group with linearly ordered, archimedean

C(GI) . Then G is isomorphic to a subgroup of the affine group iff

commutativity is a transitive relation in the set of elements other than

the identity of G .
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APPENDIX: REPRESENTING ORDERED GROUPS AS AN ALTERNATIVE TO CURVE FITTING

AND MAXIMIZING GOOMESS OF FIT

In earlier papers (1970, 1972) it was shown that there are many

psychological theories that assume that theoretical or empirical curves

either have the same shape or can be transformed to the same shape.

Frequently the psychological reasoning deals primarily with the relation-

ship between curves and only incidentally with the shape of the curves or

the form of the transformation. Unfortunately, the usual statistical

procedures for quantifying the relation between curves presuppose that

the shape of the curves or the form of the transformation are known. The

results in this paper are part of an attempt to quantify the relation

between curves without making assumptions about shape, form of transforma-

tion or other assumptions lacking psychological content. Signal detection

theory will now be used as a vehicle for discussing this research and as

an illustration of affine measurement.

Signal detection theory (SDT) is well known and widely applied by

experimental psychologists. Conditions for experimental data to be com-

patible with the basic psychology )f SDT are now known (Marley, 1971).

If the normality assumptions which are generally tacked ,n (Green and

Swets, 1966, especially chapter 5) to the basic psychology are true, then

the results in this paper are applicable. The application of the results

is especially straightforward for SDT data.

The experimental data for SDT is generally a set of points on an

ROC curve; i.e., a set of pairs of numbers x,y with
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y = the proportion of yes responses when a signal is present and

x = the proportion of yes responses when only noise is present.

It is generally assumed that all of the pairs <x,y> on an ROC curve lie

on a straight line on probability paper. More formally, it is assumed

that there exist numbers a and d' such that for all .<x,y. on a

given ROC curve

an(y) + d' = n(x)

where n is the inverse of the normal probability cumulative distribu-

tion. The most common way to estimate the parameters is to replot the

data points on probability paper and compute the best fitting straight

line.?

Notice that this procedure presupposes the validity of normality

assumptions in SDT. There is no generally accepted a priori argument

for normality assumptions. Our data are usually not sufficiently reliable

to reject the assumptions. The assumptions appear to be tolerated because

there is not much interest in the exact shape of the curves and because

there does not seem to be a convenient way to estimate the parameters of

psychological interest without making some equally specific assumptions.

It seems desirable to have a direct method for estimating the param-

eters. Group representations provide such a method. Some researches in

collaboration with Mr. David Saxe (Levine and Saxe, 1973) contain evidence

that direct methods can be made to be competitive with existing methods

for obtaining precise parameter estimates from data.
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To see the relevance of group representations note that * implies

y = n l[an(x) b]

for a = 1/a and b = -dVo Consequently each ROC curve is associated

with a function x
-1

[an(x) + b] = f(x) . A set of sach functions

generate a group of transformations of the numbers between zero and one.

The fact that permits one to drop normality or similar parametric

assumptions is this: The product x f[g(x)] = fg(x) of two transforma-

tions f and g is defined geometrically in terms of the graphs of the

transformations and without reference to the equations of the transformations.

For the purposes of this discussion a representation of such a group

is a matrix valued mapping

b

c d

where the numbers in the matrix assigned to the product fg is

equal to the product of the matrix assigned to f times the matrix

assigned to g . For example there is the mapping

O

a b

n
-1

[an(.) b]
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The general strategy we are using for direct estimation of parameters

is this:

1. Use empirical data points to define transformations of the

unit interval.

2. Represent the transformations of the unit interval by matrices.

3. Calculate the psychological parameters from. the numbers in the

matrices.

Step one will be dealt with later in separate papers. It is likely that

slightly different interpolation procedures will be appropriate for each

type of data. Results in this paper are being used to carry out steps

two and three. In section 11.2 a process is described for reducing the

problem of calculating the representing matrices to a standard problem

in additive measurement. Section 11.3 contains the uniqueness theorems

which make step three possible.
8

The results in this paper show that there is a sense in which

psychologically significant parameters can be calculated without making

normal, logistic, Poisson or similar parametric assumptions.
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FOOTNOTES

l'-The results in section 11.1 and 11.2 were presented at the

Mathematical Psychology Meetings, Stanford, 1968 in a paper entitled

"An analogue of Holder's theorem for measuring brightness contrast and

mental test scores."

2
For a recent work with an extensive bibliography see Krantz et al.,

1972. For another point of view see Pfanzagl, 1968.

30nly increasing transformations are studied. This means that the

parameter a is positive. In the sequel this parameter will be called the

slope; the other parameter b will be called the intercept.

4
The ordering of affine transformations used in this paper is f < g

if and only if f(x) is eventually larger than g(x) in the sense that

for some N , if x > N then f(x) < g(x) . With this order, it is easy

to show that the affine group is a fully ordered, nonarchimedean group.

For further comments on this ordering see section V.

71n the following discussion "structurally like" or "isomorphic"

means "can be placed in one to one correspondence in a way which preserves

all qualitative properties." Since the only qualitative properties of G

are its multiplication and ordering this means there is a 1 - 1 function

7S defined on G and taking values in the group of affine transformations

such that gfg) gf)gg) and f < g implies gf) < gg) .
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6
To prove this define a function GM by GM equals b/(1 - a)

if a / 1 and GM equal infinity otherwise. Then use GM = G(g)

implies fg = gf .

7Much more sophisticated methods are available. The basic logic

all seems very much the same: assume the curves have normal, logistic

or some other particular shape and select parameters to maximize a

criterion of goodness of fit. For a recent reference see D. R. Grey and

B. J. Morgan, 1972. For a practical and general procedure making very

weak assumptions about shape but with no allowance for transforming to

the same shape see W. H. Lawton, E. A. Sylvestre, and M. S. Maggio,

1972.

There are many different representations of these groups as groups.

However, when they are treated as ordered groups there is essentially

one (see 11.3) representation. The ordering is discussed in footnote

4 and in section V.


